有關(guān)高中數(shù)學(xué)說(shuō)課稿范文六篇
作為一名優(yōu)秀的教育工作者,時(shí)常需要用到說(shuō)課稿,編寫(xiě)說(shuō)課稿助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。寫(xiě)說(shuō)課稿需要注意哪些格式呢?以下是小編為大家整理的高中數(shù)學(xué)說(shuō)課稿6篇,希望能夠幫助到大家。
高中數(shù)學(xué)說(shuō)課稿 篇1
一、本節(jié)內(nèi)容的地位與重要性
"分類計(jì)數(shù)原理與分步計(jì)數(shù)原理"是《高中數(shù)學(xué)》一節(jié)獨(dú)特內(nèi)容。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,通過(guò)對(duì)這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生接受、理解分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,還為日后排列、組合和二項(xiàng)式定理的教學(xué)做好準(zhǔn)備,起到奠基的重要作用。
二、關(guān)于教學(xué)目標(biāo)的確定
根據(jù)兩個(gè)基本原理的地位和作用,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)是:
(1)使學(xué)生正確理解兩個(gè)基本原理的概念;
。2)使學(xué)生能夠正確運(yùn)用兩個(gè)基本原理分析、解決一些簡(jiǎn)單問(wèn)題;
。3)提高分析、解決問(wèn)題的能力
。4)使學(xué)生樹(shù)立"由個(gè)別到一般,由一般到個(gè)別"的認(rèn)識(shí)事物的辯證唯物主義哲學(xué)思想觀點(diǎn)。
三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理
中學(xué)數(shù)學(xué)課程中引進(jìn)的關(guān)于排列、組合的計(jì)算公式都是以兩個(gè)計(jì)數(shù)原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開(kāi)兩個(gè)基本原理,所以正確理解兩個(gè)基本原理并能解決實(shí)際問(wèn)題是學(xué)習(xí)本章的重點(diǎn)內(nèi)容。
正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件。而原理中提到的分步和分類,學(xué)生不是一下子就能理解深刻的,面對(duì)復(fù)雜的事物和現(xiàn)象學(xué)生對(duì)分類和分步的選擇容易產(chǎn)生錯(cuò)誤的認(rèn)識(shí),所以分類計(jì)數(shù)原理和分步計(jì)數(shù)原理的準(zhǔn)確應(yīng)用是本節(jié)課的教學(xué)難點(diǎn)。必需使學(xué)生認(rèn)清兩個(gè)基本原理的實(shí)質(zhì)就是完成一件事需要分類還是分步,才能使學(xué)生接受概念并對(duì)如何運(yùn)用這兩個(gè)基本原理有正確清楚的認(rèn)識(shí)。教學(xué)中兩個(gè)基本問(wèn)題的引用及引伸,就是為突破難點(diǎn)做準(zhǔn)備。
四、關(guān)于教學(xué)方法和教學(xué)手段的選用
根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實(shí)際水平,我采取啟發(fā)引導(dǎo)式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。
啟發(fā)引導(dǎo)式作為一種啟發(fā)式教學(xué)方法,體現(xiàn)了認(rèn)知心理學(xué)的基本理論。符合教學(xué)論中的自覺(jué)性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則,教學(xué)過(guò)程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生通過(guò)主動(dòng)思考、動(dòng)手操作來(lái)達(dá)到對(duì)知識(shí)的"發(fā)現(xiàn)"和接受,進(jìn)而完成知識(shí)的內(nèi)化,使書(shū)本的知識(shí)成為自己的知識(shí)。
電腦多媒體以聲音、動(dòng)畫(huà)、影像等多種形式強(qiáng)化對(duì)學(xué)生感觀的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來(lái)體現(xiàn),更好地為教學(xué)服務(wù)。
五、關(guān)于學(xué)法的指導(dǎo)
"授人以魚(yú),不如授人以漁",在教學(xué)過(guò)程中,不但要傳授學(xué)生課本知識(shí),還要培養(yǎng)學(xué)生主動(dòng)觀察、主動(dòng)思考、自我發(fā)現(xiàn)的學(xué)習(xí)能力,增強(qiáng)學(xué)生的綜合素質(zhì),從而達(dá)到教學(xué)的目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問(wèn),學(xué)生想辦法解決疑問(wèn),通過(guò)教師的啟發(fā)點(diǎn)撥,類比推理,在積極的雙邊活動(dòng)中,學(xué)生找到了解決疑難的方法。整個(gè)過(guò)程貫穿"設(shè)疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個(gè)環(huán)節(jié),學(xué)生隨時(shí)對(duì)所學(xué)知識(shí)產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過(guò)程,符合學(xué)生認(rèn)知水平,培養(yǎng)了學(xué)習(xí)能力。
六、關(guān)于教學(xué)程序的設(shè)計(jì)
。ㄒ唬┱n題導(dǎo)入
這是本章的第一節(jié)課,是起始課,講起始課時(shí),把這一學(xué)科的內(nèi)容作一個(gè)大概的介紹,能使學(xué)生從一開(kāi)始就對(duì)將要學(xué)習(xí)的知識(shí)有一個(gè)初步的了解,并為下面的學(xué)習(xí)打下思想基礎(chǔ)。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問(wèn)題,引出學(xué)習(xí)本節(jié)的必要性,明確研究計(jì)數(shù)方法是本章內(nèi)容的獨(dú)特性,從應(yīng)用的廣泛看學(xué)習(xí)本章內(nèi)容的.重要性。同時(shí)板書(shū)課題(分類計(jì)數(shù)原理與分步計(jì)數(shù)原理)
這樣做,能使學(xué)生明白本節(jié)內(nèi)容的地位和作用,激發(fā)其學(xué)習(xí)新知識(shí)的欲望,為順利完成教學(xué)任務(wù)做好思維上的準(zhǔn)備。
。ǘ┬抡n講授
通過(guò)幻燈片給出問(wèn)題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨(dú)立地把從甲地到乙地這件事辦好。
緊跟著給出:
引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不同的走法?
引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?
這個(gè)問(wèn)題的兩個(gè)引申由漸入深、循序漸進(jìn)為學(xué)生接受分類計(jì)數(shù)原理做好了準(zhǔn)備。
板書(shū)分類計(jì)數(shù)原理內(nèi)容:
完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理)
此時(shí),趁學(xué)生對(duì)于原理有了一個(gè)較清晰的認(rèn)識(shí),引導(dǎo)學(xué)生分析分類計(jì)數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點(diǎn)注意:(出示幻燈片)
。1)各分類之間相互獨(dú)立,都能完成這件事;
。2)根據(jù)問(wèn)題的特點(diǎn)在確定的分類標(biāo)準(zhǔn)下進(jìn)行分類;
。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。
這樣做加深學(xué)生對(duì)分類計(jì)數(shù)原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。
接下來(lái)給出問(wèn)題2:(出示幻燈片)
由A村去B村的道路有3條,由B村去C村的道路有2條(見(jiàn)圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?
提出問(wèn)題:?jiǎn)栴}1與問(wèn)題2同是研究從甲地到乙地的不同走法,請(qǐng)找出這兩個(gè)問(wèn)題的不之處?學(xué)生會(huì)發(fā)現(xiàn)問(wèn)題1中采用乘火車或乘汽車都可以從甲地到乙地,而問(wèn)題2中必須經(jīng)過(guò)先乘火車后乘汽車兩個(gè)步驟才能完成從甲地到乙地這件事。
問(wèn)題2的講授采用給出問(wèn)題,配圖分析,組織討論,強(qiáng)調(diào)分步。用多媒體配不同的顏色閃現(xiàn)出六種不同的走法,讓學(xué)生列式求出不同走法數(shù),并列舉所有走法。
歸納得出:分步計(jì)數(shù)原理(板書(shū)原理內(nèi)容)
分步計(jì)數(shù)原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有
N=m1×m2×…×mn
種不同的方法。
同樣趁學(xué)生對(duì)定理有一定的認(rèn)識(shí),引導(dǎo)學(xué)生分析分步計(jì)數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點(diǎn)注意:(出示幻燈片)
。1) 各步驟相互依存,只有各個(gè)步驟完成了,這件事才算完成;
。2) 根據(jù)問(wèn)題的特點(diǎn)在確定的分步標(biāo)準(zhǔn)下分步;
(3) 分步時(shí)要注意滿足完成一件事必須并且只需連續(xù)完成這N個(gè)步驟這件事才算完成。
(三)應(yīng)用舉例
教材例1:(書(shū)架取書(shū)問(wèn)題)引導(dǎo)學(xué)生分析解答,注意區(qū)分是分類還是分步。
例2:由數(shù)字0,1,2,3,4可以組成多少個(gè)三位整數(shù)(各位上的數(shù)字允許重復(fù))?本題設(shè)置了4個(gè)問(wèn)題:
。1) 每一個(gè)三位數(shù)是由什么構(gòu)成的?(三個(gè)整數(shù)字)
。2) 023是一個(gè)三位數(shù)嗎?(百位上不能是0)
。3) 組成一個(gè)三位數(shù)需要怎么做?(分成三個(gè)步驟來(lái)完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個(gè)位上的數(shù)字)
。4) 怎樣表述?
教師巡視指導(dǎo)、并歸納
解:要組成一個(gè)三位數(shù),需要分成三個(gè)步驟:第一步確定百位上的數(shù)字,從1~4這4個(gè)數(shù)字中任選一個(gè)數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個(gè)位上的數(shù)字,仍有5種選法。根據(jù)分步計(jì)數(shù)原理,得到可以組成的三位整數(shù)的個(gè)數(shù)是N=4×5×5=100.
答:可以組成100個(gè)三位整數(shù)。
。ń處煹倪B續(xù)發(fā)問(wèn)、啟發(fā)、引導(dǎo),幫助學(xué)生找到正確的解題思路和計(jì)算方法,使學(xué)生的分析問(wèn)題能力有所提高。
教師在第二個(gè)例題中給出板書(shū)示范,能幫助學(xué)生進(jìn)一步加深對(duì)兩個(gè)基本原理實(shí)質(zhì)的理解,周密的考慮,準(zhǔn)確的表達(dá)、規(guī)范的書(shū)寫(xiě),對(duì)于學(xué)生周密思考、準(zhǔn)確表達(dá)、規(guī)范書(shū)寫(xiě)良好習(xí)慣的形成有著積極的促進(jìn)作用,也可以為學(xué)生后面應(yīng)用兩個(gè)基本原理解排列、組合綜合題打下基礎(chǔ))
。ㄋ模w納小結(jié)
師:什么時(shí)候用分類計(jì)數(shù)原理、什么時(shí)候用分步計(jì)數(shù)原理呢?
生:分類時(shí)用分類計(jì)數(shù)原理,分步時(shí)用分步計(jì)數(shù)原理。
師:應(yīng)用兩個(gè)基本原理時(shí)需要注意什么呢?
生:分類時(shí)要求各類辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨(dú)立的。
。ㄎ澹┱n堂練習(xí)
P222:練習(xí)1~4.學(xué)生板演第4題
(對(duì)于題4,教師有必要對(duì)三個(gè)多項(xiàng)式乘積展開(kāi)后各項(xiàng)的構(gòu)成給以提示)
。┎贾米鳂I(yè)
P222:練習(xí)5,6,7.
補(bǔ)充題:
1.在所有的兩位數(shù)中,個(gè)位數(shù)字小于十位數(shù)字的共有多少個(gè)?
。ㄌ崾荆喊词簧蠑(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個(gè)個(gè)位數(shù)字小于十位數(shù)字的兩位數(shù))
2.某學(xué)生填報(bào)高考志愿,有m個(gè)不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫(xiě)3個(gè)不同的志愿,求該生填寫(xiě)志愿的方式的種數(shù)。
(提示:需要按三個(gè)志愿分成三步。共有m(m-1)(m-2)種填寫(xiě)方式)
3.在所有的三位數(shù)中,有且只有兩個(gè)數(shù)字相同的三位數(shù)共有多少個(gè)?
(提示:可以用下面方法來(lái)求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)只有兩個(gè)數(shù)字相同的三位數(shù))
4.某小組有10人,每人至少會(huì)英語(yǔ)和日語(yǔ)中的一門(mén),其中8人會(huì)英語(yǔ),5人會(huì)日語(yǔ),(1)從中任選一個(gè)會(huì)外語(yǔ)的人,有多少種選法?(2)從中選出會(huì)英語(yǔ)與會(huì)日語(yǔ)的各1人,有多少種不同的選法?
。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會(huì)英語(yǔ)又會(huì)日語(yǔ)。(1)N=5+2+3;(2)N=5×2+5×3+2×3)
只要大家用心學(xué)習(xí),認(rèn)真復(fù)習(xí),就有可能在高中的戰(zhàn)場(chǎng)上考取自己理想的成績(jī)。
高中數(shù)學(xué)說(shuō)課稿 篇2
一、教材地位與作用
本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識(shí)非常重要。
二、學(xué)情分析
作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們?cè)诮鉀Q任意三角形的邊與角問(wèn)題,就比較困難。
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。
根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo)
教學(xué)目標(biāo)分析:
知識(shí)目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。
能力目標(biāo):探索正弦定理的證明過(guò)程,用歸納法得出結(jié)論。
情感目標(biāo):通過(guò)推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對(duì)稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。
三、教法學(xué)法分析
教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。
學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習(xí),觀察,類比,思考,探究,動(dòng)手嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。
四、教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個(gè)好的開(kāi)頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。
3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:
在三角形中,角與所對(duì)的邊滿足關(guān)系
這為下一步證明樹(shù)立信心,不斷的使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵(lì)學(xué)生通過(guò)作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來(lái),繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來(lái)證明。
(四)歸納總結(jié),簡(jiǎn)單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問(wèn)題。
3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的.價(jià)值觀。
(五)講解例題,鞏固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡(jiǎn)單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來(lái)解三角形。
2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(六)課堂練習(xí),提高鞏固
1.在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問(wèn)題,并解答。
(七)小結(jié)反思,提高認(rèn)識(shí)
通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?
1.用向量證明了正弦定
理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。
(從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過(guò)渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。
高中數(shù)學(xué)說(shuō)課稿 篇3
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。
(二)教學(xué)內(nèi)容
本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過(guò)二次函數(shù)的圖象探索一元二次不等式的解集。通過(guò)復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫(huà)、看、說(shuō)、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂(lè)趣。
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的'認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過(guò)看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——?jiǎng)?chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。
三、重難點(diǎn)分析
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問(wèn)題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。
要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒(méi)有專門(mén)研究過(guò)這類問(wèn)題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問(wèn)題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫(huà)、看、說(shuō)、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計(jì)
本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。
(一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系
本節(jié)課開(kāi)始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問(wèn)開(kāi)始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計(jì)了以下幾個(gè)問(wèn)題:
1、請(qǐng)同學(xué)們解以下方程和不等式:
、2x-7=0;②2x-7>0;③2x-7<0
學(xué)生回答,我板書(shū)
高中數(shù)學(xué)說(shuō)課稿 篇4
一、教材分析
1、教材內(nèi)容
本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》§2.1.3函數(shù)簡(jiǎn)單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡(jiǎn)單問(wèn)題.
2、教材所處地位、作用
函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個(gè)性質(zhì).通過(guò)對(duì)本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會(huì)函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運(yùn)用單調(diào)性知識(shí)解決一些簡(jiǎn)單的實(shí)際問(wèn)題.通過(guò)上述活動(dòng),加深對(duì)函數(shù)本質(zhì)的認(rèn)識(shí).函數(shù)的單調(diào)性既是學(xué)生學(xué)過(guò)的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ).此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問(wèn)題中也有廣泛的應(yīng)用,它是整個(gè)高中數(shù)學(xué)中起著承上啟下作用的核心知識(shí)之一.從方法論的角度分析,本節(jié)教學(xué)過(guò)程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法.
3、教學(xué)目標(biāo)
(1)知識(shí)與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性
的方法;
。2)過(guò)程與方法:從實(shí)際生活問(wèn)題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問(wèn)題,讓學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力.
。3)情感態(tài)度價(jià)值觀:讓學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)功能、符號(hào)功能和工具功能,培養(yǎng)學(xué)生直覺(jué)觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì).
4、重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn)(1)函數(shù)單調(diào)性的概念;
(2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性.
教學(xué)難點(diǎn)(1)函數(shù)單調(diào)性的知識(shí)形成;
。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性.
二、教法分析與學(xué)法指導(dǎo)
本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:
1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動(dòng)了學(xué)生主體參與的積極性.
2、在運(yùn)用定義解題的過(guò)程中,緊扣定義中的.關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,逐個(gè)完成對(duì)各個(gè)難點(diǎn)的突破,以獲得各類問(wèn)題的解決.
3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用.具體體現(xiàn)在設(shè)問(wèn)、講評(píng)和規(guī)范書(shū)寫(xiě)等方面,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并成功地完成?shū)面表達(dá).
4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性.
在學(xué)法上:
1、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、研究問(wèn)題和解決問(wèn)題的能力.
2、讓學(xué)生利用圖形直觀啟迪思維,并通過(guò)正、反例的構(gòu)造,來(lái)完成從感性認(rèn)識(shí)到理性思維的一個(gè)飛躍.
三、 教學(xué)過(guò)程
教學(xué) 環(huán)節(jié) | 教 學(xué) 過(guò) 程 | 設(shè) 計(jì) 意 圖 |
問(wèn)題 情境 | (播放中央電視臺(tái)天氣預(yù)報(bào)的音樂(lè)) 滿足在定義域上的單調(diào)性的討論. 2、重視學(xué)生發(fā)現(xiàn)的過(guò)程.如:充分暴露學(xué)生將函數(shù)圖象(形)的特征轉(zhuǎn)化為函數(shù)值(數(shù))的特征的思維過(guò)程;充分暴露在正、反兩個(gè)方面探討活動(dòng)中,學(xué)生認(rèn)知結(jié)構(gòu)升華、發(fā)現(xiàn)的過(guò)程. 3、重視學(xué)生的動(dòng)手實(shí)踐過(guò)程.通過(guò)對(duì)定義的解讀、鞏固,讓學(xué)生動(dòng)手去實(shí)踐運(yùn)用定義. 4、重視課堂問(wèn)題的設(shè)計(jì).通過(guò)對(duì)問(wèn)題的設(shè)計(jì),引導(dǎo)學(xué)生解決問(wèn)題. |
高中數(shù)學(xué)說(shuō)課稿 篇5
一、說(shuō)教材
1.內(nèi)容分析:本節(jié)課是“反比例函數(shù)”的第一節(jié)課,是繼正比例函數(shù)、一次函數(shù)之后,二次函數(shù)之前的又一類型函數(shù),本節(jié)課主要通過(guò)豐富的生活事例,讓學(xué)生歸納出反比例函數(shù)的概念,并進(jìn)一步體會(huì)函數(shù)是刻畫(huà)變量之間關(guān)系的數(shù)學(xué)模型,從中體會(huì)函數(shù)的模型思想。因此本節(jié)課重點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概念,所滲透的數(shù)學(xué)思想方法有:類比,轉(zhuǎn)化,建模。
2.學(xué)情分析:對(duì)八年級(jí)學(xué)生來(lái)說(shuō),雖然他們已經(jīng)對(duì)函數(shù),正比例函數(shù),一次函數(shù)的概念、圖象、性質(zhì)以及應(yīng)用有所掌握,但他們面對(duì)新的一次函數(shù)時(shí),還可能存在一些思維障礙,如學(xué)生不能準(zhǔn)確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結(jié)出反比例函數(shù)的概念,因此,本節(jié)課的難點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概念。
二、說(shuō)教學(xué)目標(biāo)
根據(jù)本人對(duì)《數(shù)學(xué)課程標(biāo)準(zhǔn)》的理解與分析,考慮學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我把本課的目標(biāo)定為:
1.從現(xiàn)實(shí)的.情境和已有的知識(shí)經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)概念的理解。
2.經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念。
三、說(shuō)教法
本節(jié)課從知識(shí)結(jié)構(gòu)呈現(xiàn)的角度看,為了實(shí)現(xiàn)教學(xué)目標(biāo),我建立了“創(chuàng)設(shè)情境→建立模型→解釋知識(shí)→應(yīng)用知識(shí)”的學(xué)習(xí)模式,這種模式清晰地再現(xiàn)了知識(shí)的生成與發(fā)展的過(guò)程,也符合學(xué)生的認(rèn)知規(guī)律。于是,從教學(xué)內(nèi)容的性質(zhì)出發(fā),我設(shè)計(jì)了如下的課堂結(jié)構(gòu):創(chuàng)設(shè)出電流、行程等情境問(wèn)題讓學(xué)生發(fā)現(xiàn)新知,把上述問(wèn)題進(jìn)行類比,導(dǎo)出概念,獲得新知,最后總結(jié)評(píng)價(jià)、內(nèi)化新知。
四、說(shuō)學(xué)法
我認(rèn)為學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化成函數(shù)的能力是有限的,所以我借助多媒體輔助教學(xué),指導(dǎo)學(xué)生通過(guò)類比、轉(zhuǎn)化、直觀形象的觀察與演示,親身經(jīng)歷函數(shù)模型的轉(zhuǎn)化過(guò)程,為學(xué)生攻克難點(diǎn)創(chuàng)造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數(shù)概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過(guò)事例幫助完成定義。
好學(xué)教育:
因此,我采用了“問(wèn)題式探究法”的教法,利用多媒體設(shè)置豐富的問(wèn)題情境,讓學(xué)生的思維由問(wèn)題開(kāi)始,到問(wèn)題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著問(wèn)題的深入而跳躍。
高中數(shù)學(xué)說(shuō)課稿 篇6
我說(shuō)課的內(nèi)容是高中數(shù)學(xué)第二冊(cè)(上冊(cè))第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時(shí),下面我的說(shuō)課將從以下幾個(gè)方面進(jìn)行闡述:
一、教材分析
教材的地位和作用
“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開(kāi)辟了途徑,這正體現(xiàn)了解析幾何這門(mén)課的基本思想,對(duì)全部解析幾何教學(xué)有著深遠(yuǎn)的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門(mén)之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計(jì)算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說(shuō)是一種“舍本逐題”的偏見(jiàn),應(yīng)該認(rèn)識(shí)到這節(jié)“曲線和方程”的開(kāi)頭課是解析幾何教學(xué)的“重頭戲”!
根據(jù)以上分析,確立教學(xué)重點(diǎn)是:“曲線的方程”與“方程的曲線”的概念;難點(diǎn)是:怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程。
二、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:
知識(shí)目標(biāo):
1、了解曲線上的點(diǎn)與方程的解之間的一一對(duì)應(yīng)關(guān)系;
2、初步領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念;
3、學(xué)會(huì)根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;
4、強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。
能力目標(biāo):
1、通過(guò)直線方程的引入,加強(qiáng)學(xué)生對(duì)方程的解和曲線上的`點(diǎn)的一一對(duì)應(yīng)關(guān)系的認(rèn)識(shí);
2、在形成曲線和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀察、分析、討論等數(shù)學(xué)活動(dòng)過(guò)程,探索出結(jié)論,并能有條理的闡述自己的觀點(diǎn);
3、能用所學(xué)知識(shí)理解新的概念,并能運(yùn)用概念解決實(shí)際問(wèn)題,從中體會(huì)轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識(shí)。
情感目標(biāo):
1、通過(guò)概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;
2、通過(guò)反例辨析和問(wèn)題解決,培養(yǎng)合作交流、獨(dú)立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。
三、重難點(diǎn)突破
“曲線的方程”與“方程的曲線”的概念是本節(jié)的重點(diǎn),這是由于本節(jié)課是由直觀表象上升到抽象概念的過(guò)程,學(xué)生容易對(duì)定義中為什么要規(guī)定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴(kuò)大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實(shí)際模型,積累了感性認(rèn)識(shí)的基礎(chǔ),所以可用舉反例的方法來(lái)解決困惑,通過(guò)反例揭示“兩者缺一”與直覺(jué)的矛盾,從而又促使學(xué)生對(duì)概念表述的嚴(yán)密性進(jìn)行探索,自然地得出定義。為了強(qiáng)化其認(rèn)識(shí),又決定用集合相等的概念來(lái)解釋曲線和方程的對(duì)應(yīng)關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點(diǎn)。因?yàn)閷W(xué)生在作業(yè)中容易犯想當(dāng)然的錯(cuò)誤,通常在由已知曲線建立方程的時(shí)候,不驗(yàn)證方程的解為坐標(biāo)的點(diǎn)在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見(jiàn)不鮮。為了突破難點(diǎn),本節(jié)課設(shè)計(jì)了三種層次的問(wèn)題,幻燈片9是概念的直接運(yùn)用,幻燈片10是概念的逆向運(yùn)用,幻燈片11是證明曲線的方程。通過(guò)這些例題讓學(xué)生再一次體會(huì)“二者”缺一不可。
四、學(xué)情分析
此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對(duì)之間建立了一一對(duì)應(yīng)關(guān)系,已有了用方程(有時(shí)以函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(shí)(特別是二元一次方程表示直線),現(xiàn)在要進(jìn)一步研究平面內(nèi)的曲線和含有兩個(gè)變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過(guò)程,對(duì)學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時(shí)容易產(chǎn)生的問(wèn)題是,不理解“曲線上的點(diǎn)的坐標(biāo)都是方程的解”和“以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)”這兩句話在揭示“曲線和方程”關(guān)系時(shí)各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會(huì),要求學(xué)生能答出曲線和方程間必須滿足兩個(gè)關(guān)系時(shí)才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區(qū)別。
【高中數(shù)學(xué)說(shuō)課稿】相關(guān)文章:
高中數(shù)學(xué)《數(shù)列》說(shuō)課稿01-18
高中數(shù)學(xué)數(shù)列說(shuō)課稿06-07
高中數(shù)學(xué)優(yōu)秀說(shuō)課稿03-08
高中數(shù)學(xué)全套說(shuō)課稿06-08
【優(yōu)秀】高中數(shù)學(xué)說(shuō)課稿03-01